

Product Specification

400G-FR4 QSFP-DD Optical Transceiver Module FTCD4313E1PCL

PRODUCT FEATURES

- Hot-pluggable QSFP-DD type 2 form factor
- Supports 425Gb/s aggregate bit rate
- Power dissipation < 12W
- RoHS-6 compliant
- Case temperature range of 0°C to +70°C
- Single 3.3V power supply
- Aligned with IEEE P802.3cu
- 4x100Gb/s PAM4 serial lanes
- 8x50G PAM4 retimed 400GAUI-8 electrical interface
- LC duplex receptacle
- I2C management interface

APPLICATIONS

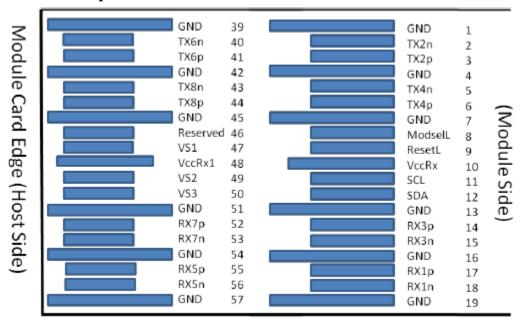
• 400G FR4 applications with FEC

Finisar's FTCD4313E1PCL FR4 QSFP-DD transceiver modules are designed for use in 400 Gigabit Ethernet links on up to 2km of single mode fiber. They are compliant with the QSFP-DD MSA, QSFP28 MSA¹, IEEE P802.3cu⁷ and portions of P802.3bs⁸. Digital diagnostic functions are available via the I2C interface, as specified by the QSFP28 MSA and Finisar Application Note AN-20xx⁵. The transceiver is RoHS-6 compliant per Directive 2011/65/EU4 and Finisar Application Note AN-2038⁵.

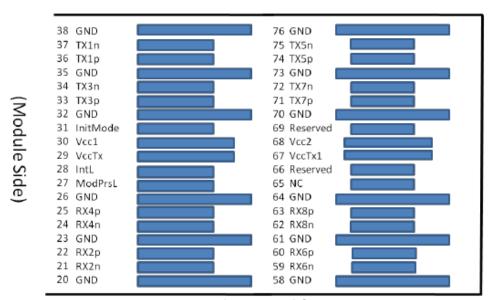
PRODUCT SELECTION

FTCD4313E1PCL

E: Ethernet protocol


P: Pull-tab type release

C: Commercial temperature range


L: LC duplex receptacle

I. Pin Descriptions

Bottom side viewed from bottom

Top side viewed from top

Module Card Edge (Host Side)

Figure 1 – QSFP-DD -compliant 76-pin connector (per QSFP-DD MSA)

Pad	Logic	Symbol	Description	Plug Sequence ⁴	Notes
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	-
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4	CHL-1	GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	1
6	CML-I	Tx4n	Transmitter Non-Inverted Data Input	3B	
7	CHL-I	GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	1
9	LVTTL-I		Module Reset	3B	
10	TAIIT-I	VccRx	+3.3V Power Supply Receiver	2B	2
	LVCMOS-	SCL	2-wire serial interface clock		-
11	I/O			3B	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rж3р	Receiver Non-Inverted Data Output	3B	
15	CML-0	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rxlp	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rxln	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-0	Rx2n	Receiver Inverted Data Output	3B	-
22	CML-0	Rx2p	Receiver Non-Inverted Data Output	3B	
23	CIII O	GND	Ground	1B	1
24	CML-0	Rx4n	Receiver Inverted Data Output	3B	-
25	CML-0	Rx4p	Receiver Non-Inverted Data Output	3B	
26	CILL C	GND	Ground	1B	1
27	TUTTI-0	ModPrsL	Module Present	3B	-
28	LVTTL-O	IntL	Interrupt	3B	
29	TALLE-0	VccTx	+3.3V Power supply transmitter	2B	2
30		Veclx		2B	2
31	LVTTL-I		+3.3V Power supply Initialization mode; In legacy QSFP	3B	2
31	LVIIL-I	Inithode	applications, the InitMode pad is called LPMODE	35	
32		GND	Ground	1B	1
33	CML-I	ТжЗр	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Txlp	Transmitter Non-Inverted Data Input	3B	-
37	CML-I	Txln	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
	I				
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тибр	Transmitter Non-Inverted Data Input	3A	_
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VecRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
52	CHE O		•		
52 53		Rx7n	Receiver Inverted Data Output	3A	
	CML-0	Rx7n GND	Receiver Inverted Data Output Ground	3A 1A	1

	t		<u> </u>	+	-		
56	CML-0						
57		GND	Ground	1A	1		
58		GND	Ground	1A	1		
59	CML-0	Rx6n	Receiver Inverted Data Output	3A			
60	CML-O	Rx6p	eceiver Non-Inverted Data Output 3A				
61		GND	round 1A 1				
62	CML-O	Rx8n	eceiver Inverted Data Output 3A				
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A			
64		GND	Ground	1A	1		
65		NC	No Connect	3A	3		
66		Reserved	For future use	3A	3		
67		VccTxl	3.3V Power Supply	2A	2		
68		Vcc2	3.3V Power Supply	2A	2		
69		Reserved	For Future Use	3A	3		
70		GND	Ground	1A	1		
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	3A			
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A			
73		GND	Ground	1A	1		
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input 3A				
75	CML-I	Tx5n	Transmitter Inverted Data Input	•			
76		GND	Ground	1A	1		
Note	1: QSFP-	DD uses co	mmon ground (GND) for all signals and suppl	y (power).	All are		
comm	on within	the QSFP-	DD module and all module voltages are refe	renced to t	this		
pote	ential unl	less otherw	rise noted. Connect these directly to the h	ost board s	signal-		
comm	non ground	i plane.					
Note	2: VccRx	, VccRxl,	Vccl, Vcc2, VccTx and VccTxl shall be appl	ied concur:	rently.		
Requ	irements	defined fo	or the host side of the Host Card Edge Conn	ector are D	listed		
in Table 4. VccRx, VccRxl, Vccl, Vcc2, VccTx and VccTxl may be internally							
connected within the module in any combination. The connector Vcc pins are each							
rated for a maximum current of 1000 mA.							
Note 3: All Vendor Specific, Reserved and No Connect pins may be terminated with 50							
ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within							
the module. Vendor specific and Reserved pads shall have an impedance to GND that							
is g	is greater than 10 kOhms and less than 100 pF.						
	Note 4: Plug Sequence specifies the mating sequence of the host connector and						
modu	module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations)						
			make, then break contact with additional				
Sequ	ence 1A,	1B will th	en occur simultaneously, followed by 2A, 2	B, followed	d by		

II. Absolute Maximum Ratings

Module performance is not guaranteed beyond the operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.3		4.0	V	
Storage Temperature	T_{S}	-40		+85	°C	
Case Operating Temperature	T_{OP}	0		+70	°C	
Relative Humidity	RH	15		85	%	1
Receiver Damage Threshold, per Lane	P_{Rdmg}	4.5			dBm	

Notes:

1. Non-condensing.

III. Electrical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Supply Current	Icc			3.83	A	
Module total power	P			12	W	1
Transmitter						
Signaling rate per lane		26.5	$6625 \pm 100 \text{ p}$	pm.	Gbd	
Differential data input voltage per lane	Vin,pp,diff	900			mV	2
Differential input return loss			quation (83 EEE802.3br		dB	
Differential to common mode input return loss			quation (83 EEE802.3br		dB	
Differential termination mismatch				10	%	
Module stress input test			er 120E.3.4. EEE802.3b			3
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common mode voltage		-350		2850	mV	4
Receiver						
Signaling rate per lane		26.5	625± 100 p	pm.	Gbd	
AC common-mode output voltage (RMS)				17.5	mV	
Differential output voltage				900	mV	
Near-end ESMW (Eye symmetry mask width)		0.265			UI	
Near-end Eye height, differential (min)		70			mV	
Far-end ESMW (Eye symmetry mask width)		0.2			UI	
Far-end Eye height, differential (min)		30			mV	
Far-end pre-cursor ISI ratio		-4.5		2.5	dB	
Differential output return loss			equation 83 EEE802.3br			
Common to differential mode			equation 83			
conversion return loss		II	EEE802.3br	n		
Differential termination mismatch				10	%	
Transition time (min, 20% to 80%)		9.5			ps	
DC common mode voltage (min)		-350		2850	mV	4

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. With the exception to 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 3. Meets specified BER
- 4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

IV. Optical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Aligned with 400GBASE-FR4 as being defined by IEEE P802.3cu

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling rate (each lane (range)		53.1	$125 \pm 100 \text{ pp}$	m	GBd	
Modulation format			PAM4			
		1264.5	1271	1277.5		
T 1 1 ()		1284.5	1291	1297.5		
Lane wavelength (range)		1304.5	1311	1317.5	nm	
		1324.5	1331	1337.5		
Side-mode suppression ratio (SMSR)		30			dB	
Total average launch power				9.5	dBm	
Average launch power, each lane				3.5	dBm	
Average launch power, each lane		-3.2			dBm	1
Difference in launch power between				4	dB	
any two lanes (OMAouter) max				4		
Outer Optical Modulation Amplitude						
(OMAouter), each lane min						
for TDECQ < 1.4 dB		-0.2			dBm	
for 1.4 dB \leq TDECQ \leq 3.4 dB		-1.6 + TDECQ			dBm	
Launch power in OMAouter minus		-1.7			dBm	
TDECQ, each lane		-1./				
Transmitter and dispersion eye closure				3.4	dB	
for PAM4 (TDECQ), each lane				3.4		
Transmitter eye closure for PAM4				3.4	dB	
(TECQ), each lane						
TDECQ – TECQ				2.5	dB	
Average launch power of OFF				-16	dBm	
transmitter, each lane				-10		
Extinction ratio		3.5			dB	
Transmitter transition time				17	pS	
Transmitter over/under-shoot				22	%	
Transmitter peak-to-peak power				4.5	dBm	
RIN _{17.1} OMA				-136	dB/Hz	
Optical return loss tolerance				17.1	dB	
Transmitter reflectance				-26	dB	2

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Transmitter reflectance is defined looking into the transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Receiver						
Signaling rate (each lane (range)		53	3.125 ± 100]	ppm	GBd	
Modulation format			PAM4			
		1264.5	1271	1277.5	nm	
Lane wavelength (range)		1284.5	1291	1297.5		
Lane wavelength (range)		1304.5	1311	1317.5		
		1324.5	1331	1337.5		
Damage threshold, each lane			4.5		dBm	1
Average receive power, each lane				3.5	dBm	
Average receive power, each lane		-7.2			dBm	2
Receive power (OMAouter), each lane				3.7	dBm	
Difference in receive power between				4.1	dB	
any two lanes (OMAouter) Receiver reflectance				-26	4D	
				-20	dB	
Receiver sensitivity (OMAouter), each lane (max) for SECQ < 1.4 dB				4.6	dBm	
for 1.4 dB \leq SECQ \leq 3.4 dB				-4.6 -6 + SECQ	dBm	
Receiver sensitivity (OMAouter),						3
each lane				-2.6		
Conditions of stressed receiver sensitivit	y test:4					•
Strassed ave alegura for DAM4					dB	
Stressed eye closure for PAM4 (SECQ), lane under test			3.4			5
OMAouter of each aggressor lane			1.5		dBm	3

Notes:

- 1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 2. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 3. Measured with conformance test signal at TP3 (see 151.8.13) for the BER specified in 151.1.1.
- 4. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combined)	BR			425	Gb/s	1
Bit Error Ratio	BER			2.4E-4		2
Maximum Supported Distances						
Fiber Type						
SMF per G.652	Lmax1	0.002		2	km	

Notes:

- 1. Supports 100G Single Lambda MSA.
- 2. As defined by IEEE P802.3bs.

VI. Environmental Specifications

Finisar FTCD4313E1PCL FR4 QSFP-DD transceivers have an operating case temperature range of 0°C to +70°C.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		+70	°C	
Storage Temperature	T_{sto}	-40		+85	°C	

VII. Regulatory Compliance

Finisar FTCD4313E1PCL FR4 QSFP-DD transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Agency	Standard
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 56
Laser Eye Safety	UL	IEC 60825-1:2014 IEC 60825-2: 2004+A1+A2
Electrical Safety	UL	IEC 62368-1:2018
Electrical	UL/CSA	CLASS 3862.07
Safety		CLASS 3862.87

Copies of the referenced certificates are available at Finisar Corporation upon request.

CAUTION: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

III. Digital Diagnostics Functions

FTCD43133E1PCL FR4 QSFP-DD transceivers support the I2C-based diagnostics interface specified by the SFF Commitee¹. See also Finisar Application Note AN-20xx (TBD).

IX. Memory Contents

Per QSFP-DD MSA Specification¹. See Finisar Application Note AN-20xx (TBD).

XI. Mechanical Specifications

Finisar FTCD4313E1PCL FR4 QSFP-DD transceivers are compatible with the QSFP-DD Type 2 Specification for pluggable form factor modules.

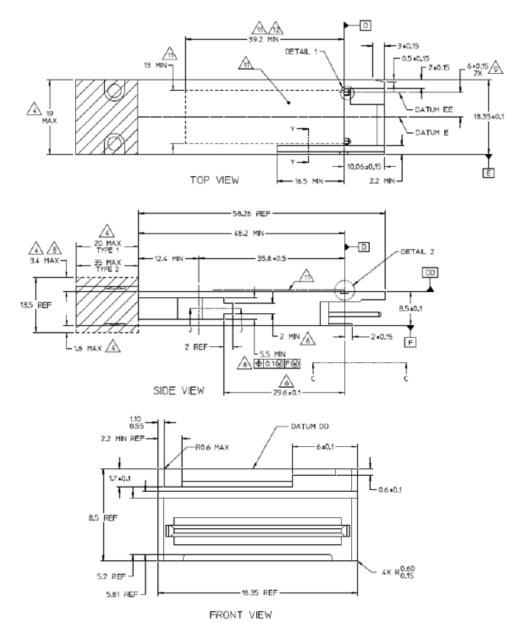


Figure 2. FTCD4313E1PCL Mechanical Dimensions.

Figure 3. Product Label

XII. References

- 1. QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver
- 2. SFF-8665: "QSFP+ 28Gb/s 4X Pluggable Transceiver Solution (QSFP28)", Rev 1.9, June 29, 2015 and associated SFF documents referenced therein:
 - i. SFF-8661
 - ii. SFF-8679
 - iii. SFF-8636
 - iv. SFF-8662
 - v. SFF-8663
 - vi. SFF-8672
 - vii. SFF-8683
- 3. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.
- 4. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 5. Application Note AN-2153, Initialization, Finisar Corporation.
- 6. Application Note AN-2154, EEPROM Map, Finisar Corporation.
- 7. IEEE P802.3cu 400GBASE-FR4
- 8. IEEE P802.3bs, 400GAUI-8 Interface.

For More Information:

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com