FINISAR[®]

Product Specification

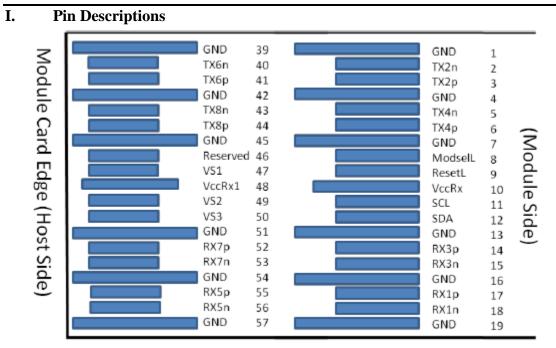
400GBASE-FR8 QSFP-DD Optical Transceiver Module FTCD1333E1PCL

PRODUCT FEATURES

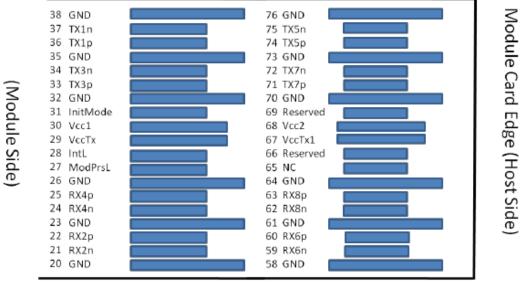
- Hot-pluggable QSFP-DD Type 2 form factor
- Supports 425Gb/s aggregate bit rate
- Power dissipation < 13W
- RoHS-6 compliant
- Case temperature range of 0°C to +70°C
- Single 3.3V power supply
- Maximum link length of 2km on Single Mode Fiber (SMF)
- Aligned with IEEE 802.3bs
- 8x50G PAM4 DFB-based LAN-WDM transmitter
- 8x50G PAM4 retimed 400GAUI-8 electrical interface
- Duplex LC receptacles
- CMIS 3.0 Compliant
- I2C management interface

Finisar's FTCD1333E1PCL FR8 QSFP-DD transceiver modules are designed for use in 400 Gigabit Ethernet links on up to 10km of single mode fiber. They are compliant with the QSFP-DD MSA¹, QSFP28 MSA², IEEE P802.3bs and portions of IEEE P802.3bm. Digital diagnostic functions are available via the I2C interface, as specified by the MSA and Finisar Application Note AN-20xx⁵. The transceiver is RoHS-6 compliant per Directive 2011/65/EU4 and Finisar Application Note AN-2038⁴.

PRODUCT SELECTION


FTCD1333E1PCL

- E: Ethernet protocol
- P: Pull-tab type release
- C: Commercial temperature range
- L: LC receptacles



APPLICATIONS

• 400G FR8 applications with FEC

Bottom side viewed from bottom

Top side viewed from top

Pad	Logic	Symbol	Description	Plug	Notes
200	20920	oynaso1	Description	Sequence ⁴	
1		GND	Ground	18	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	_
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	18	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	-
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input	3B	
7	0.12 2	GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	38	-
9	LVTTL-I		Module Reset	3B	
10	20112 1	VecRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS-	SCL	2-wire serial interface clock	3B	-
	I/0				
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rxlp	Receiver Non-Inverted Data Output	3B	_
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	18	1
21	CML-0	Rx2n	Receiver Inverted Data Output	3B	-
22	CML-0	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	18	1
24	CML-0	Rx4n	Receiver Inverted Data Output	3B	-
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	18	1
27	LVTTL-0	ModPrsL	Module Present	3B	-
28	LVTTL-0	IntL	Interrupt	3B	
29	20112 0	VeeTx	+3.3V Power supply transmitter	2B	2
30		Veel	+3.3V Power supply	2B	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP	3B	-
	20112 1	Intenoue	applications, the InitMode pad is called LPMODE	32	
32		GND	Ground	1B	1
33	CML-I	ТхЗр	Transmitter Non-Inverted Data Input	3B	-
34	CML-I	Tx3p	Transmitter Inverted Data Input	3B	
35		GND	Ground	18	1
36	CML-I	Txlp	Transmitter Non-Inverted Data Input	3B	-
37	CML-I CML-I	Txln	Transmitter Inverted Data Input	3B 3B	
38	0111 - 1	GND	Ground	1B	1
					-
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-0	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
		Rx5p	Receiver Non-Inverted Data Output	3A	-

Figure 1 – QSFP-DD -compliant 76-pin connector (per QSFP-DD MSA)

56	CML-0	Rx5n	Receiver Inverted Data Output	3A	1 1				
57	CHL-0	GND	Ground	1A	1				
		GND		1A	1				
58 59	CML-0	GND Rx6n	Ground	JA JA	1				
			Receiver Inverted Data Output		<u> </u>				
60	CML-0	Rx6p	Receiver Non-Inverted Data Output	3A					
61		GND	Ground 1A 1						
62	CML-O	Rx8n	Receiver Inverted Data Output	3A					
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A					
64		GND	Ground	1A	1				
65		NC	No Connect	3A	3				
66		Reserved	For future use	3A	3				
67		VccTxl	3.3V Power Supply	2A	2				
68		Vee2	3.3V Power Supply	2A	2				
69		Reserved	For Future Use	3A	3				
70		GND	Ground	1A	1				
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A					
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A					
73		GND	Ground	1A	1				
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A					
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A					
76		GND	Ground	1A	1				
Note	1: QSFP-	DD uses co	mmon ground (GND) for all signals and suppl	y (power).	All are				
comm	on within	the QSFP-	DD module and all module voltages are refe	renced to t	this				
pote	ential unl	ess otherw	vise noted. Connect these directly to the h	ost board s	signal-				
comm	ion ground	i plane.							
Note	2: VecRx	, VecRx1,	Vccl, Vcc2, VccTx and VccTxl shall be appl	ied concur:	rently.				
Requ	irements	defined fo	or the host side of the Host Card Edge Conn	ector are 1	listed				
in I	able 4.	VecRx, Vec	Rx1, Vcc1, Vcc2, VccTx and VccTx1 may be i	nternally					
conn	ected wit	hin the mo	dule in any combination. The connector Vcc	pins are (each				
			rent of 1000 mA.						
			ific, Reserved and No Connect pins may be						
			ost. Pad 65 (No Connect) shall be left un						
the	module.	Vendor spe	cific and Reserved pads shall have an impe	dance to Gl	ND that				
is g	reater th	an 10 kOhm	ns and less than 100 pF.						
Note	4: Plug	Sequence s	pecifies the mating sequence of the host c	onnector as	nd				
modu	le. The s	equence is	: 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for	pad locat:	ions)				
Cont	act seque	nce A will	make, then break contact with additional	QSFP-DD pa	ds.				
Sequ	ence 1A,	1B will th	en occur simultaneously, followed by 2A, 2	B, followed	d by				
	в.								

II. Absolute Maximum Ratings

Module performance is not guaranteed beyond the operating range (see Section VI). Exceeding the limits below may damage the transceiver module permanently.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	Ts	-40		+85	°C	
Case Operating Temperature	T _{OP}	0		+70	°C	
Relative Humidity	RH	15		85	%	1
Receiver Damage Threshold, per Lane	P _{Rdmg}	6.3			dBm	

Notes:

1. Non-condensing.

III. Electrical Characteristics (EOL, T_{OP} = 0 to +70 °C, V_{CC} = 3.135 to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Supply Voltage	Vcc	3.135	3.3	3.465	V	
Supply Current	Icc			3.83	А	
Module total power	Р			13	W	1
Transmitter						
Signaling rate per lane		26.5	5625±100 p	pm.	Gbd	
Differential data input voltage per lane	Vin,pp,diff	900			mV	2
Differential input return loss			equation (83 EEE802.3br		dB	
Differential to common mode input return loss			equation (83 EEE802.3br		dB	
Differential termination mismatch				10	%	
Module stress input test			er 120E.3.4. EEE802.3b			3
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common mode voltage		-350		2850	mV	4
Receiver						
Signaling rate per lane		26.5	5625±100 p	pm.	Gbd	
AC common-mode output voltage (RMS)				17.5	mV	
Differential output voltage				900	mV	
Near-end ESMW (Eye symmetry mask width)		0.265			UI	
Near-end Eye height, differential (min)		70			mV	
Far-end ESMW (Eye symmetry mask width)		0.2			UI	
Far-end Eye height, differential (min)		30			mV	
Far-end pre-cursor ISI ratio		-4.5		2.5	dB	
Differential output return loss			equation 83 EEE802.3br			
Common to differential mode		Per	equation 83	E-3		
conversion return loss		I	EEE802.3br			
Differential termination mismatch				10	%	
Transition time (min, 20% to 80%)		9.5			ps	
DC common mode voltage (min)		-350		2850	mV	4

Notes:

1. Maximum total power value is specified across the full temperature and voltage range.

2. With the exception to 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.

3. Meets specified BER

4. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

IV. Optical Characteristics (EOL, $T_{OP} = 0$ to +70 °C, $V_{CC} = 3.135$ to 3.465 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Signaling rate (each lane (range)		26	5.5625 ± 100	ppm	GBd	
Modulation format			PAM4			
Lane wavelengths (range)		12 12 12 12 12 12 12	272.55 to 127 276.89 to 127 281.25 to 128 285.65 to 128 294.53 to 129 299.02 to 130 303.54 to 130	78.89 33.27 37.68 96.59 91.09 95.63	nm	
Side-mode suppression ratio (SMSR)		30	308.09 to 131	0.19	dB	+
Total average launch power		- 30		13.2	dBm	
Average launch power, each lane				5.3	dBm	1
Average launch power, each lane		-3.5		5.5	dBm	2
Outer Optical Modulation Amplitude (OMAouter), each lane		-0.5		5.5	dBm	3
Difference in launch power between any two lanes (OMAouter)				4	dB	
Launch power in OMAouter minus TDECQ, each lane		-1.8			dBm	
Transmitter and dispersion eye closure for PAM4 (TDECQ), each lane				3.1	dB	
Average launch power of OFF transmitter, each lane				-30	dBm	
Extinction ratio		3.5			dB	
RIN _{16.5} OMA				-132	dB/Hz	
Optical return loss tolerance				16.5	dB	
Transmitter reflectance				-26	dB	4

Meets 400GBASE-FR8 as being defined by IEEE P802.3bs

Notes:

1. As the total average launch power limit has to be met, not all of the lanes can operate at the maximum average launch power, each lane.

2. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

3. Even if the TDECQ < 1 dB, the OMAouter (min) must exceed this value

4. Transmitter reflectance is defined looking into the transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Receiver						
Signaling rate (each lane (range)		26	5.5625 ± 100	GBd		
Modulation format			PAM4			
Lane wavelengths (range)		1272.55 to 1274.54 1276.89 to 1278.89 1281.25 to 1283.27 1285.65 to 1287.68 1294.53 to 1296.59 1299.02 to 1301.09 1303.54 to 1305.63			nm	
Damage threshold, each lane		1308.09 to 1310.19 6.3			dBm	1
Average receive power, each lane			0.5	5.3	dBm	1
Average receive power, each lane		-7.5		0.0	dBm	2
Receive power (OMAouter), each lane				5.7	dBm	
Difference in receive power between any two lanes (OMAouter)				4.1	dBm	
Receiver reflectance				-26	dB	
Receiver sensitivity (OMAouter), each lane				-5.3	dBm	3
Stressed receiver sensitivity (OMAouter), each lane				-3.1	dBm	4
Conditions of stressed receiver sensitivit	y test:			•	•	•
Stressed eye closure for PAM4 (SECQ), lane under test		3.1			dB	5
OMAouter of each aggressor lane		1			dBm	

Notes:

- 1. The receiver shall be able to tolerate, without damage, continuous exposure to an optical input signal having this average power level.
- 2. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 3. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with SECQ of 0.9 dB.
- 4. Measured with conformance test signal at TP3 (see 122.8.9) for the BER specified in 122.1.1.
- 5. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate (all wavelengths combined)	BR			425	Gb/s	1
Bit Error Ratio	BER			2.4x10 ⁻⁴		2
Maximum Supported Distances						
Fiber Type						
SMF per G.652	Lmax1			2	km	

Notes:

1. Supports 400GBASE-FR8 per IEEE P802.3bs.

2. As defined by IEEE P802.3bs.

VI. Environmental Specifications

Finisar FTCD1333E1PCL FR8 QSFP-DD transceivers have an operating case temperature range of 0° C to $+70^{\circ}$ C.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	0		+70	°C	
Storage Temperature	T _{sto}	-40		+85	°C	

VII. Regulatory Compliance

Finisar FTCD1333E1PCL FR8 QSFP-DD transceivers are Class 1 Laser Products. They are certified per the following standards:

Feature	Agency Standard			
Laser Eye Safety	FDA/CDRH	CDRH 21 CFR 1040 and Laser Notice 50		
Laser Eye Safety	TÜV	EN 60825-1: 2007 IEC 60825-2: 2004+A1+A2		
Electrical Safety	TÜV	EN 60950		
Electrical	UL/CSA	CLASS 3862.07		
Safety		CLASS 3862.87		

Copies of the referenced certificates are available at Finisar Corporation upon request.

III. Digital Diagnostics Functions

FTCD1333E1PCL FR8 QSFP-DD transceivers support the I2C-based diagnostics interface specified by the SFF Commitee¹. See also Finisar Application Note AN-20xx (TBD).

IX. Memory Contents

Per QSFP-DD MSA Specification¹. See Finisar Application Note AN-20xx (TBD).

XI. Mechanical Specifications

Finisar FTCD1333E1PCL FR8 QSFP-DD transceivers are compatible with the QSFP-DD Type 2 Specification for pluggable form factor modules.

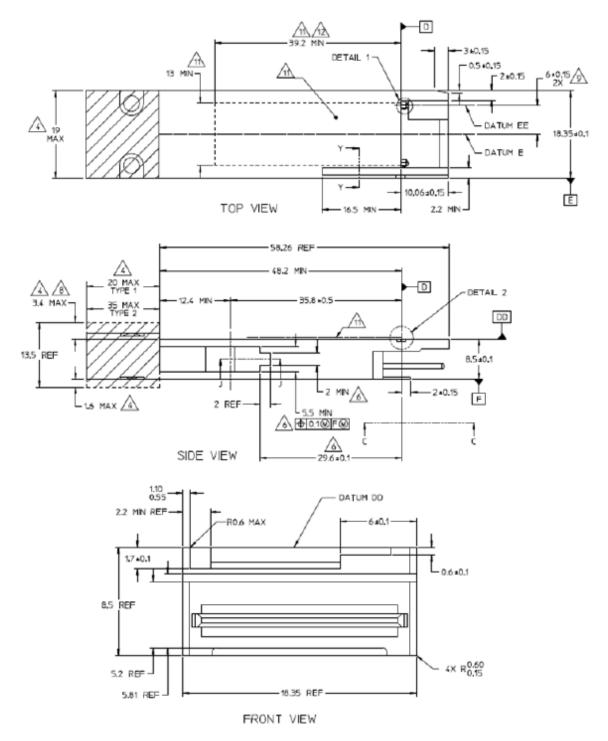


Figure 2. FTCD1333E1PCL Mechanical Dimensions.

Figure 3. Product Label

XII. References

- 1. QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver
- 2. SFF-8665: "QSFP+ 28Gb/s 4X Pluggable Transceiver Solution (QSFP28)", Rev 1.9, June 29, 2015 and associated SFF documents referenced therein:
 - i. SFF-8661
 ii. SFF-8679
 iii. SFF-8636
 iv. SFF-8662
 v. SFF-8663
 vi. SFF-8672
 vii. SFF-8683
- 3. Directive 2011/65/EU of the European Parliament and of the Council, "on the restriction of the use of certain hazardous substances in electrical and electronic equipment," July 1, 2011.
- 4. "Application Note AN-2038: Finisar Implementation Of RoHS Compliant Transceivers", Finisar Corporation, January 21, 2005.
- 5. Application Note AN-2153, Initialization, Finisar Corporation.
- 6. Application Note AN-2154, EEPROM Map, Finisar Corporation.

For More Information:

Finisar Corporation 1389 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 <u>sales@finisar.com</u> www.finisar.com