

Preliminary Product Specification

70GHz Dual Window Balanced Photodetector

BPDV3320R

PRODUCT FEATURES

- 70GHz typical bandwidth
- Unsurpassed high-power capability
- Detection of 64Gbaud x-QAM signals
- Support of 1310nm and 1550nm
- Unique on-chip biasing network

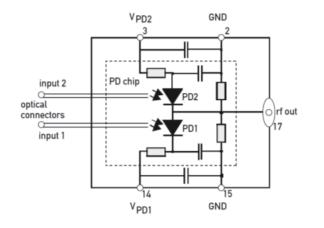
APPLICATIONS

- Transmission systems up to 1Tb/s
- Coherent Test- & Measurement systems
- Research- and Development systems
- Microwave photonics

Picture shows product package but may differ in details such as the label

The balanced photodetector consists of two optimized 70GHz, waveguide-integrated photodiodes on one single chip. As a single balanced photodetector, this configuration ensures an excellent uniformity of the paired photodiodes and is biased via integrated biasing network. Due to optimized combination of waveguide and PD design, even at high optical powers, a linear frequency response can be guaranteed at both 1310nm as well as 1550nm. The integrated 50 Ω termination allows an excellent match of the electrical output signal. Tailored configurations are available, such as BPDV dual pair -and quad sets, including connector customization and fiber matching to enable coherent detection. Tailored configurations are available, such as BPDV dual pair -and quad sets, including connector customization and fiber matching to enable coherent detection.

PRODUCT SELECTION


BPDV332	0Rx-Vy-	-22
Rx:	R	= single balanced detector
	RM	= dual pair of balanced detectors
	RQ	= quad set of balanced detectors
Vy:	VF	= female V [®] connector (standard)
	VM	= male V [®] connector
zz:	FP	= FC/PC connector (standard)
		Other available choices are: FA-FC/APC

I. Pin Descriptions

# Pin	Symbol	Description
3	VPD2	PD2 supply input
2/15	GND	ground= case ground
14	VPD1	PD1 supply input

II. Block Diagram

III. Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Dhatadiada Dias Valtaga	V_{PD1}		0		4.0	V
Photodiode Bias Voltage	V_{PD2}	—	-4.0		0	v
Maximum Average Optical Input Power	P _{opt}	40Gb/s NRZ, per channel			16	dBm
Maximum Average Optical Input Power	P_{opt}	Pulse <25ps or RZ at 40Gb/s, per channel			19	dBm
Electro Static Discharge (ESD)	V_{ESD}	C= 100pF, R= 1.5kΩ HBM	-250		+250	V
Fiber Bend Radius			16			mm

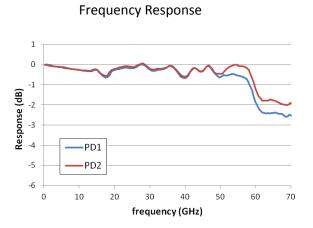
IV. Environmental Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Case Temperature	T _{Case}		0		75	°C
Relative Humidity	RH	non condensing	5		85	%
Storage Temperature	T _{sto}		-40		85	°C

V. Operating Conditions

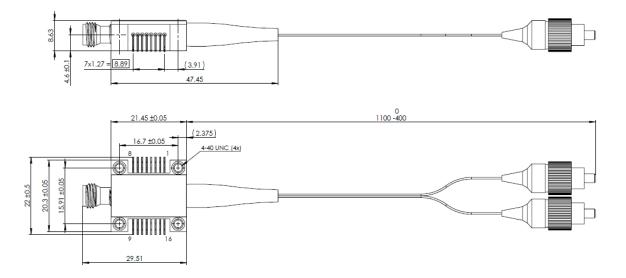
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Wavelength Range	2		1300	1310	1330	
wavelength Kange	λ		1525	1550	1575	nm
Average Optical Input Power Range	P _{OPT}	for each diode	-20		10	dBm
Dhotodiada Dias Valtaga	V_{PD1}		2.0	2.8	3.3	V
Photodiode Bias Voltage	V _{PD2}		-3.3	-2.8	-2.0	V

VI. Electro-Optical Specifications¹


Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		1310nm	0.35	0.45		
Photodiode DC Responsivity	R	1550nm	0.45	0.6		A/W
		optimum polarization				
Imbalance of Responsivity	Imb	Imb=		0.15	0.5	dB
		10*log10(R _{PD1} /R _{PD2})				
Polarization Dependent Loss	PDL	1310nm		0.6	0.9	dB
Polarization Dependent Loss	FDL	1550nm		0.4	0.8	
Photodiode Dark Current	Idark			5	200	nA
Optical Return Loss	ORL	1550nm	27			dB
3dB Cut-off Frequency ²	f _{3dB}		59	69		GHz
RF Common Mode Rejection	CMRR	CMRR= 20*log10 (S21-		15		dB
Ratio	China	S31)/(S21+S31)		10		üb
	S ₂₂	015 GHz		-15	-10	
Output Reflection Coefficient		1530 GHz		-10	-7	dB
		3067 GHz		-2.6	-1.5	
Skew					2	ps
Skew (Inter Detector Module)		RM & RQ version			10	ps
Notes:						

1. λ = 1550nm, V_{PD} = ± 2.8V, T = 25°C, P_{OPT} = -3dBm

2. Measured using Agilent 86030A 67GHz Lightwave component analyzer



VII. Typical Performance

VIII. Mechanical Specifications

All Dimensions in mm

Parameter	Description
Signal fiber PD1	SMF 28, 900µm loose buffer, yellow, label "1"
Signal fiber PD2	SMF 28, 900µm loose buffer, yellow, label "2"

IX. Accessories

Evaluation Kit Α.

The kit serves as easy-to-use utility to characterize the balanced photodetector under laboratory conditions and contents of a printed circuit board (PCB), four screws to establish removable connectivity between photodetector and board, as one DC cable to ensure the photodiode bias voltage.

ORDERING INFORMATION

EVA-BPDV

Β. **Photodetector Power Supply**

socket head screws 4-40 UNC

We recommend usage of our individually accessible photodetector power supply (PPS), in particular for optimized performance at high optical input levels. As portable device it provides stable biasing voltage supply and a front display for review on photocurrent.

ORDERING INFORMATION

Photodetector power supply for all balanced detectors; includes 2x PPS, 1x cable-set Btype. The PPS is compatible with EVA-board (specified scheme applicable to RM & RQ version). PPS units include 2x 1.5V batteries

Notes

- Any trademarks used in this document are properties of their respective owners.
- II-VI Incorporated reserves the right to make changes without notice. •

Х. **Revision History**

Revision	Date	Description
A01	2019	Initial draft
A02	2020-03-05	Transition to II-VI template, added optical specifications